Monitoring drought using multi-sensor remote sensing data in cropland of Gansu Province

نویسندگان

  • Linglin Zeng
  • Linglin ZENG
  • Jie SHAN
  • Daxiang Xiang
چکیده

Various drought monitoring models have been developed from different perspectives, as drought is impacted by various factors (precipitation, evaporation, runoff) and usually reflected in various aspects (vegetation condition, temperature). Cloud not only plays an important role in the earth's energy balance and climate change, but also directly impacts the regional precipitation and evaporation. As a result, the change of cloud cover and cloud type can be used to monitor drought. This paper proposes a new drought composite index, the Drought Composite Index (DCI), for drought monitoring based on multi-sensor remote sensing data in cropland of Gansu Province. This index combines the cloud classification data (CLS) from FY satellite and Vegetation Condition Index (VCI) which was calculated using the maximum and minimum NDVI values for the same time period from Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. Pearson correlation was performed to correlate NDVI, VCI, CLS and DCI values to precipitation data and soil moisture (SM) data collected from 20 meteorological stations during the growing season of 2011 and 2012. Better agreement was observed between DCI and precipitation as compared with that between NDVI/VCI and precipitation, especially the one-month precipitation, and there is an obvious time lag in the response of vegetation to precipitation. In addition, the results indicated that DCI well reflected precipitation fluctuations in the study area promising a possibility for early drought awareness necessary and near real-time drought monitoring.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Drought Monitoring Using Vegetation Indices and MODIS Data (Case Study: Isfahan Province, Iran)

Drought is a major problematic phenomenon mostly for semi-arid areas of Iran. During drought periods, reduction in vegetation levels causes such problems as soil erosion, surface runoff, flood risk, etc. Therefore, the assessment of drought effects on plant covers is the most important issue. This research was conducted in 2015 using the extracted vegetation indices from Moderate Resolution Ima...

متن کامل

Assessing the Efficiency of Vegetation Indicators for Estimating Agricultural Drought Using MODIS Sensor Images (Case Study: Sharghi Azerbaijan Province)

Drought is a natural disaster. Because a significant impact on the agricultural and economy sector, it affects the lives of local residents. With Using of the remote sensing, drought can be studied through its effects on plants and agriculture resulting in more accurate and effective results found for modeling drought. In this study, the efficiency of agricultural drought indicators for estimat...

متن کامل

Detecting Surface Waters Using Data Fusion of Optical and Radar Remote Sensing Sensor

Identification and monitoring of surface water using remote sensing have become very important in recent decades due to its importance in human needs and political decisions. Therefore, surface water has been studied using remote sensing systems and Sentinel-1 and Sentinel-2 sensors in this study. In this paper, two data fusion approaches and decision fusion improve the accuracy of surface wate...

متن کامل

Assessing the Efficiency of Vegetation Indicators for Estimating Agricultural Drought Using MODIS Sensor Images (Case Study: Sharghi Azerbaijan Province)

Drought is a natural disaster. Because a significant impact on the agricultural and economy sector, it affects the lives of local residents. With Using of the remote sensing, drought can be studied through its effects on plants and agriculture resulting in more accurate and effective results found for modeling drought. In this study, the efficiency of agricultural drought indicators for estimat...

متن کامل

Evaluation of remote sensing indicators in drought monitoring using machine learning algorithms (Case study: Marivan city)

Remote sensing indices are used to analyze the Spatio-temporal distribution of drought conditions and to identify the severity of drought. This study, using various drought indices generated from Madis and TRMM satellite data extracted from Google Earth Engine (GEE) platform. Drought conditions in Marivan city from February to November for the years 2001 to 2017 were analyzed based on spatial a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013